
215

Chapter 20

SECURE SOCKET LAYER AND

TRANSPORT LAYER SECURITY

If you’ve used your credit card over the Internet, you’ve probably used Secure
Socket Layer (SSL). Its main purpose is to make e-commerce users feel se-

cure about sending their financial information over the Internet.1 SSL seems to
complete the transaction quickly, and much of what goes on in that short time
is transparent to the user.

SSL is a data communication protocol (set of agreed on procedures) that
implements three cryptographic assurances—authentication, confidentiality,
and message integrity—and provides secure key exchange between an Internet
browser and an Internet server. Note that SSL does not offer nonrepudiation.

To notify users that they’re using SSL, current versions of the Netscape and
Microsoft Internet browsers display a small padlock (see Figure 20-1). Older
versions of Netscape display a blue border around the browser window.

Padlock
symbolizes SSL
session.

Figure 20-1 The SSL symbol is shown in a typical browser window.

1. SSL is also infrequently used for e-mail, ftp (file transfer protocol), VPN, and so on.

Internet Browser

www.DigitalCertificatesInc.com

Digital Certificates Inc.
(our trust transferred to you)
1 year registration fee … $14.95

—Please submit name and credit card number—
Name: HxMel
Card #: 1874-0637-4212-0130

Secure Socket Layer

Mel ch 20 3/15/01, 11:00 AM215

216 CHAPTER 20 • SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY

History of SSL
Netscape developed SSL in 1994 and released version 2 in early 1995. By that
time, William Gates, Jr., understood the importance of the Internet and quickly
developed and released a competing Microsoft product called Private Commu-
nicating Technology (PCT); it briefly competed with SSL. Media attention to
SSL bugs and PCT forced Netscape to release SSL version 3 (SSL v3) in 1995.
PCT is seldom used anymore.

In 1996 the Internet Engineering Task Force (IETF) formed a committee,
the Transport Layer Security (TLS) working group, to develop and publish an
SSL standard. In January 1999, the TLS working group published the TLS
protocol, which was based on SSL v3. Both Microsoft and Netscape support
TLS. Interestingly, Microsoft implemented TLS in its browser before Netscape
did.

SSL comes first in the title of this chapter because, as we’re writing this
book, more people have heard of it than TLS. The differences between SSL v3
and TLS version 1 are minor. Almost everything in this chapter is applicable to
SSL v3 as well as TLS. At the end of the chapter we note some differences.

Overview of an SSL Session
Figure 20-2 shows the symbols used in this chapter.

Figure 20-3 presents an overview of an SSL/TLS session. (More SSL/TLS
details follow in the next section.)

Negotiating cryptographic parameters between two computers that prob-
ably don’t know each other’s cryptographic capabilities is the first thing SSL/
TLS participants must do. (SSL/TLS accommodates a variety of cryptographic
choices from which the client and server may choose.) Then Bob uses Alice’s
public key to send her a secret. They use the secret to independently make the
identical secret key. Next, in our example, Bob authenticates Alice, a server
merchant, but Alice does not authenticate him. Note that because SSL/TLS
uses the agreed-on secret key for authentication, Alice and Bob agree on a se-
cret key before authentication. Finally, they use the secret key to exchange
messages.

IETF set standard

SSL/TLS allows two
computers to
negotiate
cryptographic
parameters.

Mel ch 20 3/15/01, 11:00 AM216

Figure 20-2 These symbols are used to represent the concepts discussed in this
chapter.

OVERVIEW OF AN SSL SESSION 217

12

3

6

9

=

3
61

58
9

4

2

7

Alice Private Key Plaintext

Signed Message
(Private Key
Encrypted)

Confidential Message
(Public or Secret Key

Encrypted)

Public Key

Secret Key

Alice

Hash Function

Compression
like PKZip

Bob

Random Number
(also Random

Number Generator)

Timestamp

Bob

Digital Certificate

Root Certificate

R

Mel ch 20 3/15/01, 11:00 AM217

218 CHAPTER 20 • SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY

An SSL Session in Detail
Let’s watch as Bob, an Internet customer using his browser, connects to an
Internet server and merchant, AliceDotComStocks. (We’ll abbreviate
AliceDotComStocks as Alice unless we feel it’s worth reinforcing that Alice is
the merchant server.) Although SSL/TLS can accommodate many different

Figure 20-3 Overview of an SSL/TLS session. Bob, a customer, authenticates Alice,
a merchant.

3

61

58

9

4

2

7

Alice

Overview of SSL/TLS Session
(Alice a server…Bob a client)

HELLO
(and negotiate crypto parameters)

Alice: Bob:
Hello, Alice. Let’s talk.

Hello yourself, Bob.

Alice:
Sends Bob her digital certificate.

Bob:
Encrypts random number with Alice’s

public key and sends it to her.

KEY AGREEMENT

Alice & Bob
Use random number to independently

generate shared secret keys.

BOB AUTHENTICATES ALICE

Alice:
Alice proves to Bob that she
generated identical secret keys as
Bob.

CONFIDENTIALITY AND INTEGRITY

Alice & Bob
Use secret keys to exchange private

messages with integrity.

3

61

58

9

4

2

7

3

61

58

9

4

2

7

Mel ch 20 3/15/01, 11:00 AM218

cryptographic variations, for simplicity we show only one cryptographic varia-
tion in the following example.

Hello and Negotiate Parameters
In Figure 20-4, Bob sends a plaintext message Hello and suggests some param-
eters for their conversation. Bob also sends Alice an alternative in case she can’t
accommodate his first suggestion. For example, if Alice can’t do TLS, Bob of-
fers her the option SSL v3. Although we’re showing only one alternative, Bob
may include many possible alternatives.

Alice responds with her choice of cryptographic parameters. In Figure 20-5,
Alice agrees with all of Bob’s suggestions except that she requests DES instead
of Triple DES. Alice and Bob agree to converse using RSA for key exchange,

Bob, the client,
initiates contact
and suggests some
cryptographic
parameters.

Figure 20-4 Bob sends Hello and suggests parameters.

Alice responds.
Definition: Cipher
suite

Figure 20-5 Alice responds.

AN SSL SESSION IN DETAIL 219

HELLO

Can we talk with:

Version:
TLS version 1 if you can, else SSL v3
Key Exchange:
RSA if you can, else Diffie-Hellman
Secret Key Cipher Method:
TripleDES if you can, else DES
Message Digest:
SHA-1 if you can, else MD5
Data Compression Method:
PKZip if you can, else gzip
Random #:
196,201,083

HELLO YOURSELF

I hear you. Let’s talk with:

TLS version 1
Key Exchange:
RSA
Secret Key Cipher Method:
DES
Message Digest:
SHA-1
Data Compression Method:
PKZip
Random #:
823,495,127

Mel ch 20 3/15/01, 11:00 AM219

220 CHAPTER 20 • SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY

DES for bulk data encryption, and SHA-1 for message digesting. They also
agree on a data compression method.2 Put together, all these agreements are
called a cipher suite. (It’s not likely that Alice couldn’t accommodate Triple DES;
we’re showing it simply as an example of an alternative option. Rijndael isn’t
offered because it’s still too new.)

Exchanging Digital Certificates
After responding to Bob’s Hello, Alice sends Bob her digital certificate.3

In our example, a trusted root CA signed Alice’s certificate. Bob uses his
trusted copy of that particular root CA’s public key to verify Alice’s certificate
and enclosed public key (see Figure 20-6). Recall from Chapter 17 that Internet
browsers install trusted CA certificates (public keys).

Only if Alice sends her digital certificate to Bob does SSL/TLS permit her
to request Bob’s certificate. She’s not required to request Bob’s certificate, and
even if she does request it, he need not comply. Later in the chapter we show
why.

SSL allows the
client to
authenticate the
server. Bob
authenticates Alice.

Figure 20-6 Alice sends her digital certificate. Bob uses the trusted CA certificate to
verify Alice’s digital certificate (her public key).

2. A compression program that also decompresses data, such as PKZip, WinZip, gzip,
or StuffIt.

3. And any other digital certificates Bob needs to build a digital certificate chain to
Alice’s digital certificate.

Root

Alice

Internet
Browser

R

R
Alice

Mel ch 20 3/15/01, 11:00 AM220

Key Agreement (Exchange)
Bob generates a 48-byte random value called a pre-master secret (see Figure
20-7). He encrypts it with Alice’s public RSA key and sends it to her. Then Alice
decrypts the pre-master secret with her matching private RSA key.

So far, our examples of secret key exchange have indicated that two people
need share only one secret key. Real-world systems prefer to use more secret
keys to thwart cryptanalysis. In SSL/TLS each end of the connection (Alice and
Bob) generates six secret keys.

Alice generates three secret keys for Alice-to-Bob messages, shown on the
left in Figure 20-8. The first key (such as a DES secret key) is for encryption,
the second key is for the message integrity (HMAC), and the third key is used
to initialize the cipher (IV).4 Note that these keys are used only for messages
Alice sends to Bob and not for messages Bob sends to Alice. Alice generates and
uses three additional keys for Bob-to-Alice messages. Similarly, because Bob
must generate exactly the same keys as Alice, he generates three secret keys for
Alice-to-Bob messages and three keys for Bob-to-Alice messages, shown on the
right in Figure 20-8.

It’s not important for our discussion, but if you’re interested, later in the
chapter you’ll find additional specifics on how the six shared SSL/TLS secret
values are generated.

Definition: pre-
master secret

Figure 20-7 Bob generates a 48-byte random number called a pre-master secret. He
encrypts it with Alice’s public key and sends it to her.

SSL/TLS uses six
separate secret
keys.

4. Think of cipher initialization as random plaintext that primes the cipher pump. In
cryptographic literature it’s often abbreviated IV.

AN SSL SESSION IN DETAIL 221

3

61

58

9

4

2

7

Alice Internet
Alice

3

61

58

9

4

2

7

6 secret
keys

6 secret
keys

Mel ch 20 3/15/01, 11:00 AM221

222 CHAPTER 20 • SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY

Authentication
It is at this point that you might expect Alice to authenticate Bob, but in our
example she doesn’t. How can Bob get away without being authenticated?
There are two major reasons.

First, Alice will check that Bob’s credit card (you know she’ll ask for it soon)
hasn’t been invalidated by the credit card company, and that’s all the authenti-
cation she currently needs. Also, it takes time for her to authenticate Bob, and
she doesn’t want an impatient Internet customer to click off her site and can-
cel the sale.

 Second, most e-commerce clients don’t yet have digital certificates, and
e-commerce merchants are currently assuming the risk entailed. However, Alice
and other e-commerce merchants probably won’t assume this risk much longer
as they get stung by Internet con artists. If you’re interested, at the end of the
chapter you’ll find more specifics on how Alice can authenticate Bob.

Bob sends Alice a message encrypted with their shared secret keys. This
message, called a finished handshake message, is the first message encrypted with
the secret keys Bob and Alice independently generated during the key agree-
ment phase.

Alice responds to Bob with her own encrypted finished handshake message.
Bob is now assured that he must be communicating with Alice because Bob sent
the pre-master secret encrypted with Alice’s public RSA key (Figure 20-7). Only
Alice could have decrypted the pre-master secret used to calculate the six shared
secret keys.

Alice and Bob can now begin to use their six shared secrets for bulk data
encryption, such as ordering merchandise with a credit card or insurance forms.

Figure 20-8 Alice’s and Bob’s identical shared secret keys.

AliceDotComStocks
(the server
merchant) doesn’t
always authenticate
Bob (the client).

Bob authenticates
that Alice has
independently
calculated the
identical secret
keys.

Secret

MAC

IV

Secret

MAC

IV

Alice
to Bob

Bob to
Alice

Alice
to Bob

Bob to
Alice

Internet

Mel ch 20 3/15/01, 11:00 AM222

Confidentiality and Integrity
Figure 20-9 shows the general steps Alice takes to prepare an SSL/TLS secure
message using the agreed-on cipher suite and secret keys.5

1. She compresses the message using the agreed compression method.
2. She hashes the compressed data and her secret HMAC key to make an

HMAC.
3. She encrypts the combination of compressed data and HMAC with her

Alice-to-Bob DES key.

Recall that the HMAC secret key is different from the DES encryption
secret key.

Bob receives the SSL/TLS encrypted message and reverses the process, as
shown in Figure 20-10.

Figure 20-9 Alice prepares an encrypted message for transport.

Figure 20-10 Bob verifies and recovers a message from Alice.

5. In this overview, we omit some details such as data fragmentation and padding.

AN SSL SESSION IN DETAIL 223

= = =

1. Compress 2. Hash 3. Encrypt

=

3. Decompress

=

2. Authenticate

=

1. Decrypt

= ?

Mel ch 20 3/15/01, 11:00 AM223

224 CHAPTER 20 • SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY

1. He decrypts the combination of compressed data and HMAC with his copy
of Alice-to-Bob DES key.

2. He authenticates the message in two steps. First, he hashes the decrypted
compressed data and secret HMAC key. Then he compares (see the sym-
bol “= ?”) the HMAC from step 1 to the HMAC from this newest hash.

2. He decompresses6 and recovers the plaintext message.

TLS Variations
The preceding example shows Bob encrypting a random number, the pre-mas-
ter secret, using Alice’s public RSA key. After Alice decrypts it with her private
RSA key only Alice and Bob know the pre-master secret used to generate the
six shared secret keys.

SSL/TLS can also use Diffie-Hellman (see Chapter 10 and Appendix A) to
independently create the shared pre-master secret key and six shared secret keys
shown in Figure 20-8. One of the Diffie-Hellman variations doesn’t support
authentication.

Anonymous Diffie-Hellman
One variation, called Anonymous Diffie-Hellman, allows Alice and Bob to si-
multaneously generate six shared secrets without either one authenticating the
other. But then neither Bob nor Alice is certain who is on the other side of the
connection. Why would anyone use this approach?

As we said, AliceDotComStocks is often satisfied with receiving a credit
card number and is willing to assume any risks entailed in someone else’s use of
Bob’s credit card without Bob’s authorization.

What about Bob? Bob can decide to trust that he has downloaded the au-
thentic AliceDotComStocks Web page and associated forms. Perhaps it’s not a
big risk. People often give their credit card numbers to strangers on the tele-
phone, in restaurants, and so on. Should you reveal your credit card number this
way? Well, most of us do, and not enough of us have had problems with this to
stop using credit cards in this way. But if you’re sending something very valu-
able over the Internet—such as the password to your bank account or personal
financial or health records—it’s not a good idea to trust Anonymous Diffie-
Hellman key agreement.

Anonymous Diffie-
Hellman doesn’t
authenticate Bob or
Alice.

6. Remember, compression means using a compression-decompression method such as
PKZip, WinZip, or StuffIt. Don’t confuse this with HMAC, which does not
decompress.

Mel ch 20 3/15/01, 11:00 AM224

Fixed and Ephemeral Diffie-Hellman
Both of these Diffie-Hellman variations support authentication. In Fixed (or
static) Diffie-Hellman, Alice and Bob exchange their public Diffie-Hellman
values using trusted digital certificates. In Ephemeral Diffie-Hellman, Alice and
Bob exchange their public Diffie-Hellman values signed with RSA or DSA keys.

Comparing TLS, SSL v3, and SSL v2
The TLS standard says that “TLS version 1.0 and SSL v3 are very similar, [and]
thus, supporting both is easy.” Some of the differences include minor changes
in HMAC calculations, cipher suite support, and pseudo-random number cal-
culations. You can think of TLS as “SSL v3.1.”

The differences between SSL v3 and SSL v2, however, are more pro-
nounced. No one who has access to SSL v3 should use SSL v2. Arguably, us-
ers should turn off support for SSL v2 in their Internet browsers.

A Big Problem with SSL v2
Because of the way SSL v2 negotiates the cipher suite, BlackHat can convince
Alice and Bob to use much weaker encryption than they are capable of using.
This is called a cipher suite rollback attack. For example, even though Alice and
Bob can do Triple DES (i.e., 168-bit encryption), BlackHat can attack their SSL
v2 cipher suite negotiations and convince them to use something much weaker,
such as 40-bit encryption.

A Possible Problem with TLS and SSL
No version of TLS or SSL protects against traffic analysis. A cryptanalyst doing
traffic analysis watches the number of messages sent from and to a particular
Internet address. Although the analyst may not know what’s inside each mes-
sage, it’s possible that the knowledge of heavier-than-usual message traffic be-
tween two addresses can be, by itself, useful information. For example, a heavy
exchange of messages between legal offices in separate cities might signal inten-
tions that an adversary could use to his or her advantage.

The threat posed by BlackHat’s use of traffic analysis probably doesn’t af-
fect most Internet users. Nevertheless, it’s a serious enough concern that Chap-
ter 21 shows a way to limit the damage from traffic analysis.7 SSL and TLS can’t.

Fixed and
Ephemeral Diffie-
Hellman support
authentication.

SSL v3 and TLS are
almost identical.

SSL v3 and SSL v2
are very different.

The danger of
traffic analysis

7. Supplemental tech note: TLS (and SSL) are above the TCP/IP layer in the proto-
col stack. There’s no way they can hide the address and port of the source and desti-
nation addresses.

COMPARING TLS, SSL V3, AND SSL V2 225

Mel ch 20 3/15/01, 11:00 AM225

226 CHAPTER 20 • SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY

Generating Shared Secrets
As promised earlier in this chapter, this section describes some of the steps that
occur after Bob sends Alice the pre-master secret. Alice and Bob use the pre-
master secret, the random values they exchanged in the Hello messages, and
a pseudo-random function (PRF) to independently and simultaneously gener-
ate a master secret.

The PRF is very similar to a message digest function run many times; it
adds enough uncertainty to the generation of secrets that it makes replication
by an attacker infeasible. After completing two rounds of PRF, Alice and Bob
have independently generated six equivalent secrets, as shown in Figure 20-11.

The PRF uses two different message digest functions because, as stated in
the IETF TLS standard document, “In order to make the PRF as secure as
possible, it uses two hash algorithms in a way which should guarantee its secu-
rity if either algorithm remains secure.” This means that two different message
digest methods are used in case BlackHat cracks one of them; the other hash
function, which presumably is secure, ensures that BlackHat can’t generate the
same secrets generated by Alice and Bob.

After generating the six shared secrets, the pre-master secret is no longer
needed and should, for security reasons, be deleted.

Definition: master
secret

Figure 20-11 Alice and Bob use the pre-master secret, pseudo-random numbers,
and pseudo-random functions to produce six shared secret values. Presumably, an
attacker can’t imitate their process.

Use both SHA-1
and MD5 for
added security.

187434
588980
934208
908942
389759
565642

3

61

58

9

4

2

7

3

61

58

9

4

2

7

3

61

58

9

4

2

7

3

61

58

9

4

2

7

3

61

58

9

4

2

7

3

61

58

9

4

2

7

Alice Hello Random

Bob Hello Random Bob Hello Random

PreMaster Secret

Alice Hello Random

Master Secret

3

61

58

9

4

2

7

3

61

58

9

4

2

7

3

61

58

9

4

2

7

3

61

58

9

4

2

7

3
61

58

9

4

2

7
3

61

58

9

4

2

7

Alice Hello Random

Bob Hello Random Bob Hello Random

PreMaster Secret

Alice Hello Random

Master Secret

= =
Six shared

secrets

Mel ch 20 3/15/01, 11:00 AM226

Bob Authenticates Himself to
AliceDotComStocks

If AliceDotComStocks wants to authenticate Bob, she requests his digital cer-
tificate after she sends hers to him. We’ll pick up the action after Bob sends Alice
the pre-master secret and his digital certificate containing his RSA public key.

Bob authenticates himself to Alice by verifying that he has the private RSA
key that matches the public RSA key on the digital certificate he just sent Alice.
Bob digests a combination of the master secret and some previous messages. He
then signs the digest (encrypts it with his private RSA key) and sends it to Alice.
The message Bob sends to Alice (shown in Figure 20-12) is called a certificate
verify message.

Alice verifies the certificate verify message with her copy of Bob’s public
RSA key. She trusts that she must be communicating with the owner of Bob’s
private key and the person who knows their shared master secret—Bob.

It’s instructive and reinforcing to note that even though BlackHat can also
decrypt this message digest with Bob’s public key, he can’t recover Alice and Bob’s
master secret because Bob digests the master secret before he signs it. Recall that
a secure message digesting function, such as MD5 or SHA-1, implements one-
way assurance (see Chapter 14). One-way assurance (and a sufficiently long mas-
ter secret) prevents BlackHat from “going backward” to the master secret.

Bob uses RSA to
authenticate
himself to Alice.
Definition:
certificate verify
message

Figure 20-12 Bob authenticates himself to Alice. Not shown: Alice decrypts the CVM
with Bob’s public key and compares it to her independently hashed Handshake Mes-
sages and Master Secret.

Message digest
assurance in action

Review
Secure Socket Layer (SSL) and the newer standard Transport Layer Security
(TLS) are used to securely send information over the Internet, and the two stan-
dards are very similar. Both are designed to negotiate cryptographic parameters
between two computers. SSL/TLS implements three cryptographic

REVIEW 227

BobInternet

Certificate Verify Message
(CVM)

=
HiHi

Handshake
Messages

+
Master Secret

Bob

Mel ch 20 3/15/01, 11:00 AM227

228 CHAPTER 20 • SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY

assurances—authentication, confidentiality, and message integrity—and pro-
vides secure key exchange between an Internet browser and an Internet server.

SSL/TLS goes through the following steps to complete a secure transac-
tion: negotiating parameters, exchanging digital certificates, secret key agree-
ment (exchange), authentication, and bulk data encryption (confidentiality and
message integrity).

Mel ch 20 3/15/01, 11:00 AM228

