
127

Chapter 13

HASHES
NON-KEYED MESSAGE DIGESTS

In Chapter 12, Alice signed (that is, private key encrypted) her newsletter to
assure her clients that the newsletter they received was Alice’s genuine, un-

altered newsletter. But signing anything except a small message takes too much
time.

Public key encryption and decryption methods, such as RSA and DSA, are
as much as 1,000 times slower than secret key encryption, such as DES or the
new AES standard, Rijndael. This means that an encryption that takes one
minute in DES takes many hours in RSA, obviously much too long for fast-
paced e-commerce. So cryptographers invented message digests to make private
key signing more efficient.

This chapter shows how Alice uses signed message digests (instead of a
signed message) and how Bob uses Alice’s signed message digest to verify the
origin (authenticity) and the genuineness (integrity) of Alice’s newsletter.

A message digest is used as a proxy for a message; it is a shorter, redundant
represention of the message.1 Redundant, in computer lingo, refers to the rep-
etition of a message to identify whether the message was modified during
transmission.

Communication redundancies verify that the sent message was correctly
received. For example, in communications between a control tower and a pilot,
shown in Figure 13-1, communication redundancies are used to confirm that
the data sent was correctly received. The pilot’s reply is a compact, redundant
version of the control tower’s message.

Message digests add similar redundant assurances to digital data commu-
nications. And because a message digest is usually much smaller than the under-
lying message, it’s faster to sign (private key encrypt) and verify (public key
decrypt) a message digest than a lengthy message.

Message digests
make public key
cryptography more
efficient.

Definition: message
digest

Message digests
act as proxies for
larger data.

1. MACs, discussed in Chapter 7, are also message digests. But MACs are made with
secret keys; this chapter looks at message digests that are made without secret keys.
The next chapter examines both types of message digests in more depth.

Mel ch 13 3/15/01, 10:57 AM127

128 CHAPTER 13 • HASHES: NON-KEYED MESSAGE DIGESTS

A message digest is also analogous to a fingerprint. You can authenticate a
person’s identity by verifying facial characteristics, name, height, weight, age,
knowledge of the mother’s maiden name, and so on. Similarly, a fingerprint is
also a small piece of data that authenticates identity. Because fingerprints and
message digests are used as unique proxies for a much larger whole, message di-
gests are also known as digital fingerprints (or message fingerprints). They are also
referred to as cryptographic hashes2 or cryptographic checksums. We use these terms
interchangeably as well as using the more abbreviated terms digest and hash.

Message digest methods supercompress messages so that encryption and
decryption operate on less data and, therefore, take less time. Secure Hash Al-
gorithm (SHA-1), the message digest algorithm currently recommended by
government and private cryptographers, will compress all of Microsoft Office
to about the same amount of disk space occupied by 20 xs:
xxxxxxxxxxxxxxxxxxxx.

Although message digests are similar to popular file compression programs
such as PKZip, WinZip, gzip, or StuffIt, a major difference is that popular com-
pression programs are made to compress and restore files. Message digest pro-
grams can’t and don’t restore their compressed messages; they only compress
messages. Just as a person cannot be reconstructed from a fingerprint (not yet
anyway), the original file cannot be reconstructed from the message digest (not
yet anyway).

Figure 13-1 Communication redundancies ensure that the message received accu-
rately reflects the message sent.

Message digest,
aka (cryptographic)
hash, aka digital
fingerprint, aka
cryptographic
checksum

2. Cryptographic hashes are not the same as the hashes used in computer programming.
Cryptographic hashes, although similar, add important security features.

Message digest
methods
supercompress
messages.

A message digest
cannot be
uncompressed.

Coming in For a Landing: Don’t Shoot!

Identification Friend or Foe (IFF) devices were developed during World
War II so US aircraft wouldn’t be shot down by friendly fire. Cryptogra-
phy was incorporated into the devices to stop the enemy from repli-
cating them. After the war, the IFF device was redesigned to fit into an
aircraft’s nose. A team led by Horst Feistel, later of DES fame, tested the
improved system and also developed the first practical block ciphers.
IFF without cryptography evolved into the Mark X, an essential part of
civilian and military air traffic control today.

Flight 12345
Cleared on Runway #8
Approach from south

at 150 knots

12345 on 8 south @ 150

Mel ch 13 3/15/01, 10:57 AM128

Detecting Unintentional Modifications
Before we look at message digests, it’s instructive to look at other schemes that
also act as redundant proxies. Schemes such as parity checking and checksums
were invented before their cryptographic offspring and share many of the same
goals.

Typical (not cryptographic) checksum programs search for unintentional
message modifications that originate in things such as noisy communications
channels. Like message digests, checksums are designed to identify whether a
message has been modified. For example, suppose that Alice sends the checksum
and message to Bob. Bob independently calculates a checksum on the sent data
and compares it to the checksum sent by Alice. If the checksums don’t match,
Bob knows that data were modified or lost during transmission.

Figure 13-2 shows an example of a simplistic checksum error detection
code. Alice makes a checksum stating the number of 0’s and 1’s in her message.
Both the message and the checksum are sent to Bob. The checksum program
in Bob’s computer also computes a checksum (counts the number of 0’s and 1’s
in the message he received) and compares it against the checksum he received
from Alice. In Figure 13-2, the checksum Bob independently makes doesn’t
equal the checksum Alice sent, so the message might be rejected because the
number of 0’s and 1’s received is incorrect. (The message might be accepted if,

Figure 13-2 Detecting unintentional modifications. Alice makes and sends a
checksum of her data (6 0’s and 4 1’s). Bob independently calculates the number of
0’s and 1’s and compares it to the checksum sent by Alice. Bob knows that he should
have received one fewer 0 bit and one more 1 bit.

DETECTING UNINTENTIONAL MODIFICATIONS 129

11001
10000

Checksum
Sent:
6 ‘0’s
4 ‘1’s

01001
10000

Checksum
Sent:
6 ‘0’s
4 ‘1’s

Noisy channel
error

From Alice From AliceI received:
7 ‘0’s and 3 ‘1’s.

But the checksum I
received from Alice says

something different.

Mel ch 13 3/15/01, 10:57 AM129

130 CHAPTER 13 • HASHES: NON-KEYED MESSAGE DIGESTS

for example, it was a graphic containing thousands of bits and the presence of
one altered bit was acceptable.)

Checksum methods can easily be applied to any message of any size, and the
checksum report is usually much smaller than the underlying message. Message
digests operate in a similar fashion; you can also apply them to any size message
and output a small digest. Message digests are specialized checksums; hence the
name cryptographic checksums.

Let’s review our symbols and add two new ones before we see how Alice and
her customers use message digests to prevent BlackHat from perpetrating a
fraudulent newsletter. Figure 13-3(a) shows Alice signing, and 13-3(b) shows
Bob verifying her newsletter.

Figure 13-3(c) introduces new symbols to illustrate the creation of a mes-
sage digest. The symbols represent the plaintext message (Alice’s newsletter)
crumpled into a unique wad of paper. The pictures of Alice’s newsletter and its
corresponding message digest aren’t to scale. In reality, Alice’s newsletter could
be 10,000,000 bytes or more, whereas a SHA-1 message digest is only 160 bits
(20 characters). Figure 13(d) shows a signed (private key encrypted) message
digest. Figures 13-3(e) and 13-3(f) contrast with 13-3(b); the message digest (in-

Message digests
are (cryptographic)
checksums.

Figure 13-3 (a), (b): Signing and verifying the whole message (no digest). (c), (d):
Making and signing a message digest. (e), (f): Making and verifying a message digest.

=

Alice’s
News

Signing With Hashes Verifying With Hashes

Alice’s
News= =

(a) Signing
Encrypting with

Private Key

(b) Verifying
Decrypting with

Public Key

(c) Hashing
(Making a

Message Digest)

(e) Hashing
(Making a

Message Digest)

(d) Signing
Encrypting with

Private Key

(f) Verifying (step 1 of 2 steps)
Decrypting with Public Key

Alice’s
News = Alice’s

News =

=

Signing Without Hashes Verifying Without Hashes

Mel ch 13 3/15/01, 10:57 AM130

stead of the message) is used for signing and verification. The rest of this chapter
explains how a signed message digest verifies message integrity (ensuring that
the message was not altered during transit).

Detecting Intentional Modifications
Because message digest signing and verification is probably one of the most
confusing cryptographic processes, let’s look at the pieces of that process one
step at a time. First, let’s see how an unsigned (not private key encrypted) mes-
sage digest detects intentional modifications, just like the checksum shown in
the preceding section. Then we’ll show BlackHat successfully attacking an un-
signed digest. Finally, we’ll show how a signed message digest stops BlackHat.

Figures 13-4 and 13-5 show how Alice and her customers use a message
digest as a redundant proxy for her newsletter. In Figure 13-4 Alice makes a
message digest and sends both the newsletter and the (unsigned) message digest
to Bob (and her other customers). Bob verifies the newsletter’s authenticity and
integrity with the three steps shown in Figure 13-5.

Figure 13-4 Alice sends a message and an unsigned message digest to Bob.

Figure 13-5 Bob independently calculates a digest and compares it to the digest
sent by Alice. If they are equivalent, he trusts that the message has not been modi-
fied during transit.

DETECTING INTENTIONAL MODIFICATIONS 131

Internet

Alice’s
News

Bob

Alice’s
News

Alice’s
News

3

1

=?
2

Mel ch 13 3/15/01, 10:57 AM131

132 CHAPTER 13 • HASHES: NON-KEYED MESSAGE DIGESTS

1. Bob extracts Alice’s newsletter and independently calculates a message
digest.

2. Bob extracts the message digest Alice sent to him.
3. If Bob’s independently calculated message digest (from step 1) equals the

message digest he received from Alice (from step 2), he trusts that the news-
letter has not been modified since Alice made the message digest.

Note that Alice did not sign anything—that is, she hasn’t used her private
key to digitally put her identity on the message or digest. Let’s watch BlackHat
convince Bob he has Alice’s newsletter, when in reality BlackHat has intercepted
Alice’s newsletter and substituted his forgery. In Figure 13-6, BlackHat forges
Alice’s newsletter, and makes a message digest from the forgery (a gray news-
letter depicts BlackHat’s forgery). Then, in Figure 13-7, BlackHat intercepts
Alice’s genuine newsletter and message digest and substitutes his forged “Alice’s
NEWZ” and digest.

In Figure 13-8, Bob independently calculates a message digest from the
forged newsletter following the same procedure shown in Figure 13-5. Because
his calculated message digest is equivalent to the one he received, he accepts the

Figure 13-7 BlackHat intercepts Alice’s genuine newsletter and digest and substi-
tutes his forged newsletter and digest.

Figure 13-6 BlackHat forges a newsletter and makes a message digest from the
forgery.

BlackHat
successfully attacks
because Alice
hasn’t attached
anything uniquely
hers to the
message.

Alice’s
News

Alice’s
NEWZ

Alice’s
NEWZ

Alice’s Genuine
Newsletter

BlackHat’s Forged
Newsletter

=

Alice’s
News

Alice’s
NEWZ

Alice’s
NEWZAlice’s

News

Mel ch 13 3/15/01, 10:57 AM132

newsletter as unaltered since it left the newsletter creator. Bob’s logic isn’t
wrong; the message and the message digest are a matched pair. But as shown in
Figure 13-8, there’s no signed (private key encrypted) message digest to help
Bob detect that Alice did not create the newsletter he received. Unfortunately,
Bob buys CrashingDotCom.

Let’s recap how BlackHat tricked Bob. Bob uses the newsletter/digest pair
to determine whether the newsletter was modified after it left the sender. But
BlackHat becomes the sender by substituting his own newsletter/digest pair.

Signing the Message Digest
To prevent BlackHat from successfully forging her newsletter, Alice signs a
message digest of her newsletter. Figure 13-9 illustrates the difference between
a signed and an unsigned digest. Figure 13-9(a) shows Alice making and send-
ing a digest. Alice and Bob tried this in Figures 13-4 and 13-5, but it was suc-
cessfully attacked. Figure 13-9(b) shows Alice making and sending a signed
digest.

First, let’s see how Bob verifies that the newsletter he receives is Alice’s
authentic newsletter. Then we’ll examine how the signed message digest detects
BlackHat’s forgeries. Figure 13-10 shows Bob verifying that the message has
not been modified since Alice made and signed the digest. (For convenience, the
upper-left corner of Figure 13-10 shows Figure 13-5.) Figure 13-10 is similar
to Figure 13-5 except that Bob first decrypts the signed digest with Alice’s public
key. Bob then verifies the newsletter’s genuineness in the same way as shown
previously.

As shown in Figure 13-9(b), Alice attached her identity to the newsletter
digest. Bob knows that the newsletter is authentically from Alice because only
Alice’s public key will verify (public key decrypt) a message digest equal to the
one Bob independently calculates from the newsletter he received.

Figure 13-8 Bob verifies that the newsletter hasn’t changed since the attached
message digest was made.

The difference
between an
unsigned and a
signed message
digest

Verifying a signed
message digest

SIGNING THE MESSAGE DIGEST 133

Alice’s
NEWZ

Alice’s
NEWZ

=?

Mel ch 13 3/15/01, 10:57 AM133

134 CHAPTER 13 • HASHES: NON-KEYED MESSAGE DIGESTS

Figure 13-9 The difference between a message digest and a signed message digest.
An unsigned message digest doesn’t detect BlackHat’s forgery.

Figure 13-10 Bob verifies Alice’s newsletter.

(a) Alice sends
message and digest

(b) Alice sends message
and signed digest

Alice digests her
newsletter…

Alice digests and signs
her newsletter…

…and sends the newsletter and
unsigned digest to Bob.

…and sends the newsletter and
signed digest to Bob.

=

Figure 13-5
Unsigned digest

=

Bob
independently
calculates
newsletter
digest

Bob uses
Alice’s public
key to decrypt
Alice’s signed
digest so he
can verify it
against the
digest he
made
independently
from her
plaintext.

Review

Mel ch 13 3/15/01, 10:57 AM134

Detecting BlackHat’s Forgery
The signed newsletter digest prevents BlackHat from fooling Bob with his forg-
ery. Let’s illustrate what happens when BlackHat tries to send his forged news-
letter to Bob.

Let’s first review some basics in Figure 13-11. In particular, notice that
encryption with one key and decryption with its matching key is like multiply-
ing by 1. In Figure 13-11(a), a plaintext message is encrypted and decrypted, and
a message digest is signed (encrypted) and verified (decrypted) with Alice’s pri-
vate/public key pair. In Figure 13-11(b), a message digest is signed (encrypted)
with BlackHat’s private key and verified (decrypted) with Alice’s public key. Note
that because BlackHat’s private key is not a companion to Alice’s public key, the
result of encryption/decryption is like multiplying by anything other than 1. In
other words, BlackHat can’t make a digest, sign it with his private key, and ex-
pect that decrypting with Alice’s public key will produce his digest. With this in
mind, we’re ready to see why BlackHat can’t successfully complete his forgery.

Figures 13-12(a) and (b) compare Bob verifying Alice’s authentic newslet-
ter and rejecting BlackHat’s forgery. In both (a) and (b), Bob receives a plaintext
newsletter and an encrypted newsletter digest. He calculates a newsletter digest
from the plaintext newsletter. Then he decrypts the encrypted newsletter digest
with Alice’s public key.

In Figure 13-12(a), Bob’s calculated digest and the digest he decrypts with
Alice’s public key are equal; Bob accepts the newsletter as genuine. But in Fig-
ure 13-12(b) they are not equal, and Bob rejects the newsletter. In (b) they are
not equal because, as you saw in Figure 13-11(b), signing (encrypting with
BlackHat’s private key) and verifying (decrypting with Alice’s public key) is like

Figure 13-11 (a) Encrypting and decrypting with Alice’s private/public key pair is like
multiplying by 1, but (b) encrypting with BlackHat’s private key and decrypting with
Alice’s public key is like multiplying by anything except 1.

SIGNING THE MESSAGE DIGEST 135

Signing digest
detects BlackHat’s
forgery.

* = 1 * 1=

(a) (b)

= =

Mel ch 13 3/15/01, 10:57 AM135

136 CHAPTER 13 • HASHES: NON-KEYED MESSAGE DIGESTS

Figure 13-12 Bob decrypts a digest using Alice’s public key. (a) Bob retrieves exactly
what Alice signed; (b) Bob retrieves something different from what BlackHat signed
because BlackHat’s private key is not paired with Alice’s public key.

multiplying by anything but 1. Because BlackHat doesn’t have Alice’s private
key, he can’t make a signed (encrypted) newsletter digest that correctly verifies
(decrypts) with Alice’s public key, as seen in Figure 13-12(b).

Replay Attacks
BlackHat could fool Bob by sending a copy of an old Alice newsletter and di-
gest. For example, suppose that BlackHat recorded Alice’s November 2000
newsletter. In February 2001 he intercepts Alice’s newsletter and substitutes the
one from November. This is called a replay attack. To defeat this attack, Alice
can timestamp her newsletters.

=

Bob rejectingBlackHat

=

Bob verifyingAlice (a)

(b)

Mel ch 13 3/15/01, 10:57 AM136

Supplement: Unsuccessfully Imitating a
Message Digest

Although the following attack won’t work, it’s instructive to examine because
digests are designed to protect against this attack.3

Because BlackHat can’t easily attack Alice’s signed message digest, he con-
templates the attack shown in Figure 13-13. In the left portion of the figure,
BlackHat makes a newsletter that digests to the same value as Alice’s newslet-
ter. Again, Alice’s genuine newsletter is white and BlackHat’s is gray. In the right
top portion of the figure, BlackHat removes Alice’s newsletter—but not Alice’s
signed message digest—and substitutes his forgery. Bob decrypts Alice’s signed
digest, independently calculates a hash from BlackHat’s forged newsletter, and
accepts it as authentically Alice’s. BlackHat was successful because his fraudu-
lent newsletter and Alice’s newsletter made equivalent message digests.

BlackHat’s full attack is shown in Figure 13-14. As before, Alice makes a
newsletter and a signed newsletter digest. BlackHat intercepts Alice’s newslet-
ter and substitutes his own newsletter; note that he does not substitute a new
signed newsletter digest.

3. This is an optional section. You need not read or understand this section in order to
understand the rest of the book.

Figure 13-13 BlackHat makes a newsletter digest equivalent to Alice’s newsletter
digest.

 SUPPLEMENT: UNSUCCESSFULLY IMITATING A MESSAGE DIGEST 137

=

=
=

Alice’s
public key

Mel ch 13 3/15/01, 10:57 AM137

138 CHAPTER 13 • HASHES: NON-KEYED MESSAGE DIGESTS

As before, Bob receives BlackHat’s forged newsletter and Alice’s signed
newsletter digest. He independently calculates a newsletter digest except that
now he doesn’t know that the newsletter is BlackHat’s forgery. As before, Bob
decrypts Alice’s signed message digest. He compares the two digests and accepts
BlackHat’s forgery. The shaded ovals show that BlackHat tricked Bob (and
Alice) by defeating the uniqueness of Alice’s message digest program; he was
able to make a newsletter whose digest was equal to Alice’s newsletter digest.
Unfortunately, Bob has no way to detect this forgery, and he accepts BlackHat’s
newsletter as Alice’s genuine newsletter.

Fortunately, cryptographic message digest methods ensure that BlackHat
can’t make an equivalent digest. That’s the subject of Chapter 14.

Review
Because public key encryption and decryption are slow, cryptographers invented
a condensed representation of a message, called a message digest or crypto-
graphic hash. Message digests are used as short proxies for usually much larger
messages and are designed to detect intentional modification to a message.

Figure 13-14 BlackHat forges a newsletter. Because BlackHat’s newsletter digest is
exactly equivalent to Alice’s newsletter digest, Bob mistakenly accepts BlackHat’s
forgery.

Message digest
assurances prevent
this attack.

=

Bob verifyingAlice signs

BlackHat substitutes his
forged newsletter—but
leaves Alice’s signed
message digest as is.

Bob is duped. He verified that
the newsletter hasn’t been
altered since it left the creator.

Mel ch 13 3/15/01, 10:57 AM138

By signing the newsletter digest, Alice attaches her identity to the digest just
as if she had signed her newsletter. She signs the message digest because it’s
more efficient than signing the underlying message.

Alice sends and Bob verifies using the following basic procedure.

1. Alice makes a message digest from a plaintext message.
2. Alice signs the message digest and sends the signed digest and plaintext

message to Bob.
3. Bob independently re-creates the message digest from the plaintext.
4. Bob decrypts the signed message digest with Alice’s public key.
5. Bob verifies that the message is authentic if the message digest he created

is identical to the decrypted message digest he received from Alice.

REVIEW 139

Mel ch 13 3/15/01, 10:57 AM139

Mel ch 13 3/15/01, 10:57 AM140

